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Abstract—Parallel sparse LU factorization is a key compu-  at both programming- and architecture-levels; we employ a
tational kernel in the solution of a large-scale linear systm hybrid programming paradigm to fully utilize the node-leve
of equations. In this paper, we propose two strategies 10 5.5)j6lism and memory of multicore NUMA architectures.

address some scalability issues of a factorization algohitn on our i tioation f idel d
modern HPC systems. The first strategy is at the algorithmic- ur investigation focuses on a widely used open source

level; we schedule independent tasks as soon as possible to library Super LU_DI ST [22], which is a package for the
reduce the idle time and the critical path of the algorithm. We  direct solution of a large-scale sparse general lineaesyst
demonstrate using thousands of cores that our new schedulin  of equations on a distributed-memory cluster. It is a state-
strategy reduces the runtime by nearly three-fold from that of of-the-art parallel direct solver capable of solving linea

a state-of-the-art pipelined factorization algorithm. The second t ith mili f unk f | Id i
strategy is at both programming- and architecture-levels; systems with miflions or unknowns from real-world appli-

we incorporate light-weight OpenMP threads in each MpI  cations[5]. The original target Buper LU_DI ST was the
process to reduce both memory and time overheads of a pure earlier generations of distributed-memory systems, where

MPI implementation on manycore NUMA architectures. Using  each compute node had one or a small number of processor
this hybrid programming paradigm, we obtain a significant a5 with the uniform access to the physical memory.

reduction in memory usage while achieving a parallel efficiecy . .
competitive with that of a pure MPI paradigm. As a result, in On a modern HPC computer with the multicore NUMA

comparison to a pure MPI paradigm which failed due to the ~ Nnode architecture, the parallel scaling $iper LU_DI ST
per-core memory constraint, the hybrid paradigm could utilize  often stagnates on a few hundred of cores. Performance

more cores on each node and reduce the factolrization time on profiling on 256 processor cores of the Cray-XE6 system
the same number of nodes. We show extensive performance 5t NERSC revealed that abakit% of the factorization time
analysis of the new strategies using thousands of cores ofeth . .
two leading HPC systems, a Cray-XE6 and an IBM iDataPlex. ~ WaS spent in MP—IWa'tO and MPLRecv(). In other WOde,.
for the81% of the time, the processor cores were performing

neither computation nor communication. To reduce this
idle time, in this paper, we propose an algorithmic-level

Parallel sparse LU factorization is widely used for solvingstrategy to statically schedule independent tasks as s®on a
a large-scale linear system of equations in scientific angbossible. Our experimental results will demonstrate that t
engineering simulations. It can be used alone as a diregtarallel factorization with this new scheduling strategnc
solver, or it can be used as a preconditioner for an iteraebtain speedups of up to three over the current version of
tive solver. However, implementing a parallel factoripati Super LU_DI ST which is based on a pipelined factoriza-
algorithm that is scalable in both time and memory is ation [22].
formidable task even for an expert in parallel computing. The Cray-XE6 system at NERSC is a representative of
This is because such an algorithm possesses many of tlilee new generation of a multicore NUMA architecture.
fundamental challenges of parallel programming such ag&ach node of this system has two tweleve-core MagnyCours
highly irregular memory access patterns, large degreeskf ta processors ang82GB of memory, averaging about3GB of
and data dependencies, and imbalances in data distributionemory per core. Even though our aforementioned schedul-
and workload. This situation is exacerbated by the modering strategy shortens the critical path of the algorithrey¢h
HPC computers with heterogeneous manycore NUMA nodare two hindering factors foSuper LU _DI ST to fully
architectures. In this paper, we propose two strategied-to a utilize all the cores on each node. The first factor is the
dress some of the scalability issues of a parallel facttoma per-core memory constraint. The currétper LU DI ST
algorithm: the first is at the algorithmic-level; we schexdul is based on a pure MPI programming paradigm, where the
independent tasks as soon as possible to reduce the idiecrease in the number of MPI processes often increases
time and the critical path of the algorithm. The second isthe total memory requirement. This is because the total

I. INTRODUCTION



communication volume of the algorithm often increases withelimination tree of|A|” + |A| and performance models
an increase in the number of MPI processes, and moreovearapturing both computation and communicatiéh [9]. An-
each message may be internally duplicated in multipleother relevant solver is WSMF_[13][_114] which imple-
communication buffers by an MPI implementation. Finally, ments multifrontal factorization algorithm for solving BP
Super LU_DI ST has certain amount of serial memory over- and unsymmetric systems. It uses a hybrid MPl+pthreads
head associated with an MPI process (see SeEfibn Ill). As programming paradigm, and an assembly tree (elimination
result, to solve a large-scale linear system under the ger-c tree) for scheduling. More recently, Hogg et al. used a
memory constraintSuper LU DI ST can often use only a dynamic scheduler for a shared-memory supernodal algo-
limited number of cores on each node. On the future comrithm to factorize an SPD matriX_[17]. The dependencies
puter with hundreds or thousands of cores per node, the peamong the tasks are represented by an implicit direct acycli
core memory is expected to be even smaller [6]. The secongraph (DAG), and the dependencies are resolved by keeping
factor is that on a multicore architecture, a message4pgssi track of the outstanding incoming edges at runtime.
paradigm often has a greater time overhead than a shared-In comparison to these previous works, we focus on
memory paradigm. Therefore, even when the per-core menBuper LU_DI ST which implements a supernodal right-
ory constraint did not hinder the usage of all the cores orlooking LU factorization algorithm for solving general
each node, the factorization time may not scale. Hence, it isparse linear systems. We first propose a static scheduling
imperative to abandon the pure MPI paradigm and resort tetrategy which uses one of the following two underlying
a certain type of a hybrid programming paradigm that cargraphs to represents the task dependencies: the symmetri-
exploit the NUMA architecture. To demonstrate this, in thecally pruned DAG of the LU factors and the elimination
second part of this paper, we incorporate a hybrid messagéree of |A|T + |A|. We show that our scheduling strategy
passing (MPI) and shared-memory (OpenMP) programhas very little runtime overhead on a large-scale multicore
ming paradigm intoSuper LU_DI ST. Using this hybrid clusters and can significantly reduce the factorizatioretim
paradigm, we obtained a significant reduction in memoryWe then study MPI+OpenMP hybrid paradigm to further
usage while achieving a parallel efficiency competitive toenhance the performance 8tiper LU_DI ST.
that of a pure MPI paradigm. As a result, in comparison
to a pure MPI paradigm, the hybrid paradigm could utilize
more cores on each node and reduce the factorization time To compute the solution of a sparse linear system,
on the same number of nodes. Super LU_DI ST first computes an LU factorization of the
The rest of the paper is organized as follows. In Sec-<coefficient matrix, and then applies the forward and back-
tions 0 and[, we first discuss related works and give ward substitutions. The LU factorization typically domies
a brief overview ofSuper LU DI ST, respectively. Then, the solution time and is carried out in the following three
in SectionIV, we describe two techniques, look-ahead andgteps:
static scheduling, which are designed to reduce the idle tim 1) Matrix pre-processing: Before the numerical fac-
during the parallel factorization. Next, in Secti@d V, we torization, the coefficient matrixl is first pre-processed to
discuss our attempt to incorporate a hybrid MPI+OpenMPachieve two goals. The first goal is to enhance the numerical
programming paradigm intS8uper LU_DI ST; The perfor-  stability through static pivoting and matrix equilibratio
mance results in Sectiop VI will demonstrate that thesd.e, we compute a row permutation matri., and a row
techniques can significantly improve the performance ofand column equilibration matrice®, and D.. The se-
Super LU DI ST on leading HPC computers based onrial code MC64 developed by Duff and Kostefl[7], which
multicore NUMA node architectures. We conclude with finalimplements a maximum weighted matching algorithm, is
remarks in Sectiof_ M. employed. The algorithm compute8. to maximize the
product of the diagonal entries, and it also compulgs
and D, simultaneously so that the nonzero diagonal entries
There have been several scheduling strategies and hybraf P.D,. AD,. are one in their absolute values and all the off-
programming paradigms proposed for parallel sparse direatiagonal entries are less than or equal to one in their atesolu
solvers. In this section, we briefly describe those that arealues. It has been shown that these pre-processing tech-
most relevant to the ones proposed in this paper. niques make the LU factorization numerically as stable as
PasTiX [15] implements a parallel left-looking supernodalthat using partial pivoting for a wide range of probleins [21]
factorization algorithm based on a hybrid MPI+pthreadHence Super LU_DI ST does not employ dynamic pivoting
programming paradigni_[16]. It is capable of solving both (e.g., partial pivoting) during the numerical factorizati
symmetric and unsymmetric systems, but it is most effec- The second goal of the pre-processing is to symmetrically
tive for solving a linear system with a symmetric positive reorder the matrixP.D,.AD. such that its LU factors
define (SPD) coefficient matrixl. It uses a combination remain sparse. This reduces the computational and storage
of a static and dynamic scheduling schemes based on bottosts of the LU factorization. The reordering also helps

Il1. OVERVIEW OF SUPERLU DI ST

Il. RELATED WORK



for k=1,2,...,n, do e e
1. Panel factorization ° o Te ° o o
1.1 Column computation of(:, k). olele olele oo D00
a.if pjg € Po(k) then °. o °. o
b. compute the block columf (k : ns, k) o Telele o eeo
(communicatelU (k, k) amongPc (k)) ® ® ° °

c. sendL(k : ns, k) to required processes iBr(:) ° o000 D ee/eO
d. el se [ ] [ ] o060 [ e o000
e. receiveL(k : ns, k) if required ol _lel le e ellel ol [olele

f.end if (a) Coefficient matrixA. (b) LU factors of A.

1.2 Row computation ot/ (k;, :).
a.if pjg € Pr(k) then
b. wait for U(k, k)
c. compute the block row (k, k + 1 : ns)
d. sendU(k,k+ 1:ns) to required processes iRc(:)

Figure 2. Nonzero patterns of a mattik and its LU factors.

respectively. Step 1 of the pseudocode corresponds to the

e.el se

f. receiveU(k,k + 1 : ny) if required k-th panel factorization, where thieth supernodal column

g.end if N . of L and thek-th supernodal row of/ are computed. At
2. Outer-product updates of trailing submatrix. Steps 1.1.c and 1.2.d, each processPi(k) and Pg(k)

a.for j=k+1,k+2,... ,n, with U(k,j) # 0 do
# (0 do

b fori—k+1,k+2 .. ms with L k) sends its local blocks of the factors to the processes ass$ign

to the same row and column, respectively. Then, Step 2

c. i f pjg € Pr(i) N Pc(j) v ' -

d. A(i, §) — A(i, §) — L(i, k)U (k, §) updates the trailing submatrix using theth supernodal

e end if column and row of the LU factors. To take advantage of
f. er(‘j? for the sparsity ofA, the block A(i, j) is updated only if both

g. endf or

blocks L(i,k) and U(k,j) are not empty. More detailed

end for description of the algorithm can be found [n]22]

Figure 1. Numerical factorization algorithm Buper LU DI ST.
IV. NEW STATIC TASK SCHEDULING STRATEGY
The factorization algorithm in FigurEl 1 follows a se-

to reduce communication and improve the load balance ofjuential flow, i.e., the panel factorizations and the tnai
numerical factorization[J4]. Such a matrix ordering can besubmatrix updates are performed in sequence. For instance,
computed, for example, using a nested dissection algorithithe MPI processes i- (k) and Pr(k) must wait for the
of METIS [18] on the sparsity structure ¢, A|” +|P,A|.  k-th diagonal block to be factorized before starting its pane
For the remaining of this paper, we uskto denote the factorization. Moreover, all the processes must wait fer th
matrix after the pre-processing is applied. panel factorization to complete before updating the trgili

2) Symbolic factorization: The main benefit of static submatrix. On the other hand, at each step, multiple panels
pivoting over dynamic pivoting is to permit a priori detekrmi may be ready to be factorized since they will not be updated
nation of the sparsity structures of the LU factors befoee th by the remaining panels due to the sparsity of the matrix.
numerical factorization. An efficient symbolic factorizat  Since several MPI processes may be idle waiting forkttie
algorithm [T1], [Z1], [23] has been developed to determinepanel factorization to complete, these MPI processes can be
the sparsity structure, set up the required data structure@sed to factorize the rest of the ready-to-be-factorizent|sa
and schedule all the communication and computation for thend reduce the idle time. Furthermore, by factorizing and
numerical factorization. This often mak8sper LU_DI ST  sending these panels as soon as possible, their computation
more scalable than the other solvers based on dynamind communication can overlap with other computation and
pivoting [4]. communication. In this section, we describe a new task

3) Numerical factorization: The numerical factoriza- scheduling strategy to exploit these parallelism that ate n
tion is based on a fan-out (right-looking, outer-product)fully exploited in Figure[lL.
supernodal LU factorization algorithm. A supernode is a set o
of consecutive columns of with a dense triangular block A Task dependency graph of sparse factorization
just below the diagonal and with the same nonzero structure In this section, we introduce the task dependency graph
below the triangular block. To achieve good parallelismof sparse LU factorization, which is an important tool for
and load balance, the MPI processes are assigned to tlieveloping our scheduling algorithm. We will use thiex 11
supernodal blocks in a 2D cyclic layout. Figlile 1 shows thesupernodal matrix shown in Figuké 2 for illustration, where
pseudocode of the factorization algorithm, whergis the  each column and row of the matrix represent a supernodal
number of supernodes;y is the ID of this process, and column and row, respectively. Now, consider Step 2 of
Po(k) and Pr(k) are the groups of processes assigned tdhe factorization algorithm in FigurEl 1. We see that the
the k-th supernodal column and thieth supernodal row, j-th column is updated by thé-th column only if the



block U (k, 7) is not empty. Similarly, the-th row is updated S N se e o5
by thek-th row only if the blockL (i, k) is not empty. These 5 : : : : : 5 : : 5 8 8 8
dependencies can be represented by a directed graph, where ° ° ° °
the k-th node represents thieth panel factorization, and for L o ‘ole : L) o oo ;
eachk-th node, there is a directed ed@e j) or (k,:) for ° oo ol e ORI
each non-empty blocK (k, j) or L(i, k), respectively. The o0 | 00000 0001 | |08/0.0l0
i . [ JLJ [ ] [ JLJIEC) O|0 Ooj0e e e
edge(k, j) (or (k, 1)) represents the dependency that/thih ejeee[e] [o[0)e olo/ee[o[o[oje]e
cc_JIumn (or row) updates thg-th column (or thei-th rovv_). (@) Symmetrized  (b) LU factors of|A|T +
Figure[3 shows the dependency graph of thex 11 matrix matrix |A|T + | Al |Al.
in Figurel2.

Figure 4. Nonzero patterns ofi|” + |A| and its LU factors.

3

Figure 3. Dependency graph of LU factorization.

incoming edges is called a leaf, and the node without
outgoing edges is referred to as a root. Even for the LU
factorization of an unsymmetric matrixl, the etree of
the symmetrized matrixA = |A|T + |A| can be used to
capture both column and row dependencies of the panel
factorizations. However, this etree of the symmetrizedixat
can overestimate the true dependency of the panels in the
Unfortunately, it is usually not efficient to use the graph actual unsymmetric factorization. On the other hand, rDAG
in Figure[d as a scheduling tool. This is because it containgontains some redundant edges, but it does not overestimate
excessive amount of redundant information. For examplethe dependency unless numerical cancelation occurs during
there are an edggr, 10) and a path7 — 9 — 10. Hence, the numerical factorization. Figurd3 4 aBH 5 respectively
the edge(7, 10) is redundant. show the sparsity structure and etree of the symmetrized
A transitive reduction of a directed graph encompassegnatrix A of the11 x 11 matrix A in Figure2. In comparison
all the dependency information with the minimum numberto the rDAG in Figure[B, the etree in Figuf@ 5 greatly
of edges|[[B]. However, its construction can be expensivegyverestimates the dependency of the panels, where the

One alternative is to use a so-called symmetrically prunedritical path of the etree is of length six while that of rDAG
graph [8]. To construct the pruned graph, we firstidentify th js of length three.

smallest indexs;, such thatU(k, s;,) and L(sg, k) are the

first symmetrically matched non-empty blocks for edch

Then, we prune all the edgés, j) for j > s,. The white /n
circles in the matrix of Figurg 2(p) and the dashed edges

in the graph of Figurgl3 represent the pruned edges. From @ 'b
now on, we refer to this symmetrically pruned graph as the

reduced directed acyclic graph, or rDAG in short, of the LU o

factors. A node of the rDAG without any incoming edges is
referred to as a source, while a node without any outgoing a
edges is called a sink. A similar task graph was usefih [12]

for a left-looking LU factorization algorithm, where only

the column dependency needed to be enforced. On the other @

hand, ourk-th panel factorization task factorizes botkth
row and column, and our task graph must keep track of both
column and row dependencies.

For a symmetric matrix4, its rDAG is identical to its
transitive reduction. Furthermore, in this case, rDAG is a
tree, which is commonly referred to as an elimination tree, o
etree in short, and is used extensively to study the behavior
of sparse factorization§[R4]. Just like rDAG, theh node For scheduling the panel tasks, the final LU factors will be
of the etree represents oirth panel factorization. There correct as long as the following task-dependency invariant
is an edge(k, j) from the k-th node (a child) to the-th  is preserved: before thg-th panel factorization, all the
node (the parent) it/(k, j) is the first non-empty block in preceding updates to thgth column and row must be
the k-th row of the U-factor. In the etree, a node without completed. In other words, before scheduling jhil task,

Figure 5. The etree dfA|” 4 | A|.



0. Initialize look-ahead window
a. setn,, (look-ahead window size) 1 H 01 %2 0
b. ng = 1 (index of the next column in window) ]
for k=1,2,...,n, do 3 > rll 5rm3
1. Look-ahead the new columns in the window. 0| 0|1 2 0
a.for j=ng,...,k+n, do i
b.  Panel factorizeA(j : ns, j) if possible SHF|° 4 H ?ﬂ ﬁ
(communicatd/(j, j) amongPq(j), and 0 i+ 2 |o
isendL(j : ns,j) to Pr(:))
c.end for 3 14|15 34 3
dong=k+n,+1 ] (
2. Look-ahead the rows. 0 1| 2——0+% 2
a.fori=k+1,...,k+mn, do ook ahead windd

b.  FactorizeA(i,i : ns) if U(i,i) has arrived
(isendU (i, : ns) to Po(:))
c.end for Figure 7. lllustration of look-ahead factorization.
3. Wait for U(k, k) and factorizel/ (k, :) if needed.
4. Wait forU(k,k : ng) and L(k : ng, k).

5. Look-ahead factorization To reduce the memory requirement, we look-ahead only
afor j=k+1,...,k+n, with U(k,j) # 0 do a few next supernodal columns in a so-called look-ahead
b. UpdateA(j : ns,j) window of sizen,, and see if they can be factorized. Specif-
c.  Panel factorized(j : ns, j) if possible ically, if the j-th node in the look-ahead window becomes
(communicatd/ (3, 7) amongPc(5), and a leaf after the removal of the edgg, j); i.e., this is the
isendL(j : ns, j) to Pr(:)) last update on thg-th column, then after thg-th column is
d.end for updated, we immediately factorize thie¢h column and send
6. Update the remaining trailing matrix. it to the trailing submatrix. This process is applied to all
end for the columns with the non-empty bloék(k, j) in the look-

ahead window (i.ej =k + 1,k +2,...,k + ny). Finally,

the remaining columns outside the look-ahead window are

updated as before. Figufé 6 shows the pseudocode of the

look-ahead algorithm, and Figurk 7 illustrates the altomit

all the tasks corresponding to the nodes in the dependency If n,, > 1, then thek-th column is factorized before the

graph, which can reach theth node following the directed k-th step. This is because before the end of the- 1)-th

paths, must be completed. step, all the dependencies on th¢h column are removed,
Since our panel factorization factorizes both column andand since thé-th column is in the look-ahead window at the

row, from now on, when we say that a column is factorized,(k — 1)-th step, it is factorized. Hence, at the beginning of

the corresponding row is also factorized. Our discussiorihe k-th step, if the blockU (k, j) is not empty, then thé-th

will focus on the etree, but will comment on how it can column can be used right away to update ki column.

Figure 6. Pseudocode of look-ahead factorization.

be extended to the rDAG. Note that at the beginning of thieth step, we first check
if the (k + n,,)-th column, which was not in the look-ahead
B. Look-ahead window during the(k — 1)-th step, is already a leaf.

Using the aforementioned task dependency graph, we can We now describe how we look-ahead supernodal rows.
schedule the panel factorization tasks in an order from théet us assume that theth node in the look-ahead window
leaves to the root of the etree or from the sources to théecomes a leaf after the eddg, j) is removed. Hence,
sink of the rDAG. After thek-th panel updates thg-th  the j-th column is factorized right after being updated with
column and row, the corresponding eddej) is removed the k-th panel. On the other hand, theth row cannot
from the graph, potentially making thgeth node a leaf or be factorized, yet, if a blockJ(j,¢) for ¢ > j in the
source. These leaf-nodes represent the columns and rowgh row needs to be updated. This is why the rows in
that can be factorized. If we factorize all the leaf-noded an the look-ahead window are factorized separately from the
asynchronously send the results to the trailing submatrixolumns. Specifically, when thgth node becomes a leaf,
before updating the remaining submatrix, the idle time ofthe corresponding diagonal process (e.g., prodessthe4-
the processes may be minimized. Unfortunately, factagizin th diagonal block in FigurEl 1) first factorizes its superroda
and asynchronously sending all the leaf-nodes may requirklocks in thej-column, and then sends the diagonal block
infeasibly large memory to store the pending messages. to the processes in the same column (e.g., pro@edhile



the diagonal process performs its panel factorizationteéke e e

of the processes in thgth column are blocked. As soon as d‘ \ C‘{ E)
these processes in the column receive the diagonal block, ° @ @
they perform the panel factorization of their local blocks i o e

the j-th column and send the results to the processes in

the same row (e.g., procesSssends to processes and

processO sends to proces8. Note that the results are e e o e
sent only to the processes that require them; i.e., to the ° o
processes in the columns with the non-empty blocks in the

j-th row). On the other hand, the panel factorization of the é) e @
rows is implemented using non-blocking communication,

and the processes perform the panel factorization of the row °

only after all the trailing updates with the-th panel are (a) postordering (b)  bottom-up
completed and when the diagonal block is received (Step ordering

of Figurel®). Hence, the process blocks only atkkh step
if the k-th diagonal blockU (k, k) has not been received, yet
(Step3).

This look-ahead technique has been used for dense matrix
factorization [ID], where the speedup of abouf was cording to a postordering of the etree, in which the children
reported on a shared-memory computer with tw8GHz  are numbered before their parents and the nodes within any
dual-core AMD opteron 265 processoBuper LU DI ST subtree are numbered consecutively (see Fifjuré BEp)s
already implements a pipelining mechanism, where the nex@rdering is motivated to obtain larger supernodes without
(k41)-th column is factorized before the remaining columnschanging the sparsity structure of the LU factors. The neaso
are updated. This is equivalent to look-ahead with the winthis ordering may increase the sizes of the supernodes is
dow size of one. In[42], pipelining reduced the factoriaati the following. The sparsity structure of the fill generated
time by 10% to 40% o164 processors of a Cray-T3E system. in the j-th column is contained in the union of that of
Here, we generalize this idea to an arbitrary look-aheadhe j-th column of A and those of the columns of the-
window size, which allows higher degree of parallelism andfactor, which correspond to the descendants ofjttfe node

Figure 8. Static scheduling based on etree.

overlapping of communication and computation. in the etree[[T0]. Thus, after the matrik is permuted in
. . the postordering, the nodes corresponding to the adjacent
C. Bottom-up topological ordering columns are likely to have a large number of same descen-

The look-ahead mechanism in Sectid_IV-B pro-dants and are expected to have similar sparsity structures
vides a great potential to reduce some serializationn the L-factor. As our symbolic factorization subroutine
in Super LU_DI ST. However, even after the integration locates a supernodal column in the postorder, it sets up the
of look-ahead, we observed that on 256 cores of Craydata structure to store the column. Hence, these supernodal
XE6, about76% of the numerical factorization time was columns are stored at the contiguous memory locations in
still spent at the synchronization points (e.g., Steps 3 anthe postorder. Then, during the numerical factorizatibe, t
4 of Figure[®). This is because even though many of théupernodal columns are factorized in the same postorder
panel factorization tasks were leaves, they were outside thsince this improves data locality of computing the LU
look-ahead window. Since these tasks enter the look-ahed@ctors. Unfortunately, this postordering limits the nienbf
window from the first to then,-th task in the sequence, supernodal columns that can be factorized in the look-ahead
the ordering of these tasks has a significant impact on th#&indow. This is because the look-ahead window contains
performance of look-ahead. We next propose an orderingnly the nodes in a small subtree of the etree, while missing
of the supernodal columns to increase the potential of théhe other leaf-nodes in the other parts of the tree, which are
tasks within the look-ahead window being leaves. Our mairfeady to be factorized.
objective is to find an ordering of all these tasks as given To mitigate this problem, we use a static scheduling
in the outer loop over in Figure[l so that the critical scheme based on a bottom-up topological ordering of the
path of the algorithm is shortened. Notice that this loopetree, in the spirit of breadth-first search (see Figure)8(b)
transformation is possible only for a sparse mattixsince  This ordering can be computed using a FIFO queue. First, all
its task dependency graph is not a complete graph; wheredige initial leaf-nodes in the etree are pushed into the queue
the dependency graph of a dense matrix is complete. (the nodesl through5 in Figure[8(B)). Then, the first node

Let us first discuss hovBuper LU DI ST currently or-  in the queue is popped to be scheduled, and if the removal
ders or schedules these tasks. The symbolic factorization
algorithm permutes the columns of the coefficient matrix ac- 1The nested dissection ordering is one example of postogleri



of this node generates a new leaf-node in the etree, then the 0/1/0/1/0/21/0]1/0]1/0]1
new leaf-node is pushed into the end of the queue. If we 213/2/3/23/2|3/2|3/23
use a priority-queue instead of a FIFO queue, then several 0 n n 0/1/0|1/0]1
options exist to schedule the leaf-nodes in the queue. In our 2/3[2[3]2[3]2[3]2[3]2]3
implementation, to shorten the critical path of the aldwrit o o8 ofo/1]0/1]0]2
we try to schedule the leaf-node that is furthest away from 2(3|2 203/2|3|23|2]3

the root first. This is done by ordering the initial leaf-nede @
in the descending order of their distance from the root. Then

the new leaf-nodes are pushed into the FIFO queue as the 0j1/0f1
nodes in the queue are processed (see F[gurg 8(b)). 2/1312)3
For an unsymmetric matrix, we can either use the etree 0 n
of the symmetrized matrixA”| + | A| or use the rDAG by 213|2
scheduling all the source-nodes of the rDAG first. With the 0/1/0
combination of the static scheduling and look-ahead, only 213]2]3

about36% of the numerical factorization time is now spent (b) 2D cyclic layout

at the synchronization points on th¥6 cores of Cray- - o Manoing of threads & el blocks, The kb bladk
: . . . . igure 9. Mapping of threads to supernodal blocks. The ocks
XE6. This SChedu“ng strategy will be Incorporated Into therepresents the non-empty blocks in the current panel. Fdeir priocesses

upcomming versior3.0 of Super LU_DI ST. are assigned to blocks in2ax 2 grid, where the numbers inside the blocks
indicate the process ID. Each MPI process generates foeadlr where
the blocks in blue, green, red and yellow are assigned to ithie $iecond,
V. HYBRID PROGRAMMING third and fourth thread of the processrespectively. Only the active blocks
are assigned to threads.
With the advent of multicore architecture, we are seeing

an increasing number of cores per node and a simpler core

design. In the near future, the number of cores per node is There are several options as to how to assign the indepen-
expected to be in the order of hundreds or thousélrids [6]. Ogent blocks to the threads. For instance, a process camassig
the other hand, the size of the memory on each compute nogg |ocal supernodal columns of the trailing submatrix te th
is expected to be about the same or smaller due to pOWghreads in a 1D block fashion; i.e., theth thread updates
constraint. Using a pure MPI programming paradigm is NOY¢ — 1) . h-th to (t - h — 1)-th columns, whergy, = 2= n,
appropriate for such light-weight core designs, espaciall js the number of threads, and. is the number sugérnodal
on NUMA architectures. For instance, the small amount ofsglumns assigned to this process (see Fifurg 9(a)). Since
per-core memory can become a limiting factor for runningihese columns are contiguous in memory, each thread can
one MPI process per core since each MPI process addgcess the columns without large stride. However, with this
certain amount of communication buffer overhead. Evenayout, the number of threads is limited by the number of
if we have sufficient memory to pack hundreds of MPI columns. Another approach is to assign the blocks in a
processes on each node, the network adapter on the nodg) cyclic fashion; namely théi, j)-th block is assigned
could become a serious bottleneck when many of thesg, (b, - t. + be)-th thread, where the threads are organized
tasks communicate off-node. In order to effectively uéliz jnio a+¢, x ¢, grid (i.e.,n; = t, - t.), b, = mod(4,t,), and
the node-level core resources, the on-node parallel epecut b, = mod(j, t.) (see Figur€I(h)). Since the blocks assigned
model must incorporate fine-grained data parallelism tQq 3 thread are not contiguous in memory, accessing these
reduce the message passing overhead. Hence, it becomggcks incurs some overhead. However, this offers more
imperative to investigate new programming paradigms otheparallelism than the 1D layout does. We chose to use the
than a pure MPI paradigm. In this section, we describe howi b plock layout if the number of columns is greater than
we integrated a hybrid message-passing and shared-memaqpe number of threads. Otherwise, we use the 2D cyclic
programming paradigm int@uper LU_DI ST to adapt 10 |ayout if the number of blocks is greater than the number
the modern multicore cluster. of threadd] Finally, we use a single thread to update the
The computational cost of numerical factorization is typ-trailing submatrix if there are not enough blocks.
ically dominated by the trailing submatrix update, where Thjs hybrid programming paradigm obtained significant
each process updates several independent blocks of thgguction in memory usage while achieving the same level
trailing submatrix at each step. We incorporated lightghei  of parallel efficiency as the pure MPI paradigm. As a result,
OpenMP threads in each MPI process to update disjoinfy comparison to the pure MPI paradigm which failed due to

use OpenMP over other threading or data parallel languages

because it is production-ready, easily accessible, andlyid 2, o, experiments, the thread grid is as close to a squack agi
supported. possible.



[ Name | Application Source Type Symm. n "= fill-ratio |
tdr455k Accelerator Omega3P real Yes 2,738,556 41 12.3
matrix211 Fusion M3D-C real No 801, 378 161 9.9
cc_linear2 Fusion NIMROD complex No 259, 203 109 7.1
ibm_matick | Circuit simulation IBM complex No 16,019 4,005 1.0
cagel3 DNA electrophoresis ~ UF collection  real No 445, 315 17 608.5

Table |

TEST MATRIX PROPERTIES

use more cores on each node and reduce the factorizatid Test matrices

time on the same number of nodes. The applications of our main interests are the numerical

simulations (Omega3P) to model particle accelerator cavi-
VI. PERFORMANCE RESULTS ties [2] and those (M3D-Eand NIMROD) to model fusion
energy device<]1]. The accelerator simulation involves-no

din thi We first d ib testbeds. t finear eigenvalue problems for solving discretized Maxwel
proposed In this paper. YVe 1irst describe our testbeas, e%tquations, where the solutions of the highly-indefinitedin

E&tgces, ancti_ e>ipe2|_rrr:ental Setups mt ?ﬁCt ftacts of tl tB.”systems are needed for the shift-invert operations. When th
respectively. 1hen, we present the efiects ol StaliCypig is close to an actual eigenvalue, these linear systems

Zchedulmg;ng_rh_ybgd r;_roggar;mg g&lthe perforrr:_antlze 0gre close to singular and extremely difficult to solve using
uperti In section an » espectively. 4 preconditioned iterative method. The numerical simula-

_ tion of the fusion energy devices requires the solution of

A. Experimental testbeds linear systems of the discretized extended MHD equations,

We conducted our experiments to examine the perforWhiCh are Unsymmetric and indefinite. Besides these, we

mance of the proposed techniques on two leading HPC syg’tave selected two matrices from the other disciplines; one
tems at the National Energy Research Scientific Computin§om a circuit simulation at IBM, and the other for DNA

Center (NERSC). In this section, we briefly describe ourélectrophoresis from the University of Florida sparse iatr
experimental testbeds. collection. Tabldll shows the properties of our test masrice

Cray-XE6 (Hopper): Hopper is a Cray-XE6 system and C. Experimental setup
placed number eight on the latest Top500 Supercomputer
list (June 2011). It consists 0f53,216 compute cores d
and 217TB of total memory, and has a peak performance]c
of 1.28 petaflops/sec. Each compute node consists of tw

For all of our experiments in this paper, we used the
efault setups ofSuper LU DI ST; i.e., we usedMC64
or static pivoting and equilibration to enhance numerical

- %tability, a serial nested dissection algorithm of METIS to
twelve-core AMD Magny-Cour.1GHz processors, giving preserve the sparsity of the LU factors, and serial symbolic

each node24 cores. Each Magny-Cours ha_s WO SIX-COT€ (o torization to setup the data structures required for the
Bulldozer CPUs connect.ed by interconnect in one p"’mk""g‘;‘ﬁumerical factorization. These serial matrix pre-proress
vl_\:here Qtach C(I;U halt\lsult,v?Aownh_lfc?l mer-r:r(])-ry cor;]trollerksand symbolic factorization algorithms require each MPI
enc;, ! hprow esta d achl efc ure within %?C bpaf “process to store the global coefficient matrix. It is possibl
age. ach compute node of memory with about =+, ;se parallel pre-processing algorithms and the parallel

1.3GB of memory per core when all the cores are used oy bolic factorization[[11] by replacinyC64 and METIS
the n-ogl.e. These compute nodes are connected by the Cr th a simple parallel matrix equilibration[22] and a pde&l
Gemini mterconnect that forms 3D tgrus. ] nested dissection of ParMETIE[18] or PT-SCOTCHI[20],
IBM |_DataPIex (Carver): Carver is an IBM iDataPlex respectively. However, sincuper LU DI ST does not per-
system Wlth37_520 processor cores. The compute node usegqy m any dynamic pivotingMO64 may be necessary for
for our experiments has two quad-core intel Xeon X5550y_conditioned problems. Furthermore, the matrix ordes
Nehalem2.7GHz processors, anglGB of memory. These  reyrned by ParMETIS or PT-SCOTCH would be different
nodes on Carver do not have disk, and abé@B of the | ging different numbers of processes, and this would make it

memory is used to store the system files. Hence, each COfgricyit to compare the parallel performance of the propbse
has abou®.5GB of memory when the node is fully packed. techniques on different numbers of processes.

For high-performance message passing on the interconnect

between the nodes, 4X QDR InfiniBand technology, withD. Performance results of static scheduling

32Gb/sec of point-to-point bandwidth, is used. Figure[ID shows the effects of the window sizg on
More information about our testbeds can be found athe performance of static scheduling on the Cray-XE6. In

https://www.nersc.gov/systems. the figure, the bars with the window size of one show
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Figure 10. Effects of window size on performance of statigesiuling. Figure 11. Factorization (MPl communication) time in setsnwith v2.5
and v3.0 on Hopper.

the numerical factorization times of the latest version 2.5 ) )
of Super LU DI ST, while those with the window size CloSer to a complete graph. This provides only a small
of greater than one deploy the new look-ahead and statjpotential of reducing the idle time by reordering the matrix
scheduling strategies in the upcoming release version 3.0. In Table[l, we show the experimental results on Carver.
We see that the integration of look-ahead and static scheduf N maximum number of nodes that a user can obtain on
ing significantly reduced the factorization time by redgcin Carver is64, where each node has eight cores. Hence, in
the synchronization time and overlapping communicatiorPrder to use>12 cores, we must use all of the eight cores
with computation. The improvement stagnated with the@n €ach of thés4 nodes. Unfortunately, this did not provide
window size greater thaio. enough memory to solve some of the linear systemsian
Tablell shows the performance of the static scheduling fo€OTes- However, similar to the results on Hopper, even on
all the test matrices with the fixed window sizerof = 10. hundreds of cores, 5|gn|f|can_t speedups was obtained using
Specifically, we show the performance of look-ahead alondhe static scheduling. In Sectibn VI-E, we study the memory
(“look-ahead” in the table) and the combination of look- USage in more details.
ahead with static scheduling (“schedule”), and compare it
with that of versior2.5 (“pipeline”). In the table, we clearly

Number of cores

] S version 8 32 128 512

see that with a_Iarge number of processes, the_factorlza_mon Tesults for Qrd55K
time was dominated bé/ the communication time, which cores/node| 2 4 4 8
is shown in parenthesHsSince the communication time pipeline 1959 657 394  OOM
[ d with the number of MPI processes, the pipelined schdule 1723 470 178 OOM
'ncrease . wi ] p ’ pIp results for matrix211
factorization did not scale beyond hundreds of processes. cores/node| 8 8 8 8
Even though the look-ahead alone was not effective, when it pipeline 46.9 47 101 144

as combined with the static scheduling, the communication schedule | 318 78 57 134
V_V e o g, results for cclinear2
time was significantly reduced, obtaining the speedups of up cores/node| 8 8 8 8
to 2.9 over the pipelined factorization time. Figurd 11 shows pipeline 27.4 8.5 5.7 6.3
these results visually fodr455k and matrix211 schdule | 184 49 25 27

o N . results for ibmmatick

For cagel3 the factorization was slower using the static cores/inode| 4 4 4 8
scheduling on a small number of cores (eSgor 32 cores). P'F?%“”Ie gg(l) éﬁ ;} 88%
This is mainly due to the overhead associated with the static e Sgei3 : '
scheduling such as irregular access to the panels and poor cores/node| 1 2 2 8
data locality. However, as the number of cores increases, th plr?]ecjlﬂle 5104.6  1322.3 3354 88'\4
communication started to dominate the factorization time, schdule | 70412 13168 320.2 M

and the static scheduling was able to obtain significantF Table 11l w5 500N C

SpeedUpS Of Up to ab0t6. ACTORIZATION TIME IN SECONDS WITH .OAND V3.00N CARVER.
We also see that our scheduling strategy could not ob-

tain significant speedups fabm_matick. This is because

ibm_matick and its LU factors are much denser than theE_ Performance results of hybrid programming

other test matrices. Hence, its task dependency graph is ) .
Table[IM shows the results of the hybrid programming

SIntegrated Performance Monitoring (IPM) was used to memaghe paradlgm, where we used different numbers of MPI pro-
times spent on MPI communication. cesses and OpenMP threadslércompute nodes of Hopper.



Number of cores
version 8 32 128 512 2048
results for tdr455k
cores/node 1 8 8 8 4
pipeline 250.3 (44.8) 95.0 (42.8) 49.8 (32.2) 44.7 (41.5) 81.0 (80.1)
look-ahead(10)| 248.7 (48.0) 97.9 (45.1) 45.9 (31.5) 43.5 (34.1) 67.1 (42.8)
schdule 225.5 (19.4) 70.7 (16.4) 23.7 (9.3) 17.5 (12.2) 37.7 (31.3)
results for matrix211
cores/node 8 24 24 24 8
pepeline 46.9 (13.8) 17.2 (9.3) 10.3 (8.4) 12.8 (12.4) 17.2 (17.1)
look-ahead(10)|  48.1 (15.7) 18.6 (10.6) 10.3 (8.1) 10.1 (8.5) 14.9 (10.4)
schedule 41.8 (8.2) 12.7 (4.4) 5.2 (3.1) 4.9 (4.1) 7.6 (6.4)
results for cclinear2
cores/node 8 24 24 24 8
pipeline 30.9 (29.6) 12.3 (7.2) 7.6 (6.5) 6.8 (6.6) 7.9 (7.9)
schedule 24.3 (17.8) 7.5 (2.3) 3.6 (2.4) 2.3 (2.0) 2.7 (2.5)
results for ibmmatick
cores/node 8 8 8 8 4
pipeline 46.9 (12.6) 14.9 (4.8) 7.2 (5.5) 5.4 (5.0) 5.2 (5.1)
schedule 46.4 (13.3) 12.5 (3.1) 7.0 (5.0) 5.0 (4.6) 4.8 (4.6)
results for cagel3
cores/node 1 4 4 4 4
pipeline 6798.9 (425.8)  1986.4 (287.5) 481.4 (134.9) 139.5 (61.6) 124.5 (107.7)
schedule 8412.5 (600.5)  2085.6 (241.7) 438.6 (86.8) 116.0 (34.6) 47.5 (21.5)

Table Il
FACTORIZATION (MP| COMMUNICATION) IN SECONDS WITH V2.5AND V3.00N HOPPER

The look-ahead window size is fixed af, = 10. In the ta-  hybrid paradigm. For example, the best time of the hybrid
ble, “time (s)” is the numerical factorization time in sedsn  paradigm oncagel3was about2.2 times faster than that
In addition, next to “mem (GB),” we show the total memory of the pure MPI paradigm (cf845.3 seconds with64 x 1
allocated bySuper LU_DI ST for the data structures storing while 377.2 seconds with64 x 4). This clearly shows that
the distributed LU factors and for the communication budfer the hybrid paradigm was able to better utilize the resources
used during the numerical factorization in Gigabytes. Thisavailable on the compute nodes.
value does not change with the increase in the number of Finally, when the same number of cores is used, the
MPI processes or OpenMP threads since the serial prdactorization was faster using the pure MPI paradigm on a
processing is used. Finally, under “mem (GB),” we showsmall number of cores. However, on a large number of cores,
the three memory statisticsaem, memy + memso, where  the hybrid paradigm could avoid the expensive message
mem is the total high watermark of the memory allocated passing among the cores on the same NUMA node and
by Super LU _DI ST, mem; is the total memory usage obtained a small speedup over the pure MPI paradigm (e.g.,
including the system memory before the factorization, and.9 seconds with 28 x 2 while 5.0 seconds witl256 x 1 for
memy +mems is the usage after the factorizatin. matrix211). Figure[IP shows these timing results visually
First, we clearly see that due to the serial algorithms usefbr tdr455k and matrix211.
by the default setupspem increased almost proportionally
to the number of MPI processes. We also see that; + :
mems Was significantly greater thamem. This is mainly 1
because on Hopper, all the libraries are statically linked b 5
default and this leads to a large executable file. The hybric £
programming paradigm reduces these memory bottleneck
using OpenMP threads in place of MPI processes. As ¢ ¢
result, the hybrid program could effectively use more cores

L thread
2 threads
M4 threads

L thiead
2 threads| 18
M threads

on each node, whereas the pure MPI program failed due t
the per-core memory constrafht.

Furthermore, we see that the best time for each matrix
with the fixed node count of6 was always obtained by the

4 The memory usage was obtained by reading the system file
Iproc/(pid)/status.

5The program may fail at a serial bottleneck before the famdtion
(e.g., serial equilibration or symbolic factorization).

Figure 12.

32 64 128
Number of MPIxOpenMP

(a) tdra55k

256

256

2 64 128
Number of MPIxOpenMP

(b) matrix211

Results of hybrid programming using 16 nodes gipjéo

Table[M shows the results of the hybrid programming

on Carver. The behavior of the codes was similar to those



tdr455k matrix211 cagel3
MPIxThread | time (s) mem (GB)23.3 time (s) mem (GB)5.4 time (s) mem (GB)#43.3
16 x 1 115.6 45.4, 75.24+0.8 19.2 15.4, 56.3+0.5 | 3943.7 106.3, 91.5+ 1.1
32 x1 61.5 81.9, 128.0 + 1.1 10.5 30.7, 106.6 + 1.1 | 1743.3 169.5, 141.7+ 1.8
16 x 2 73.1 45.4, 75.24+1.5 12.9 15.4, 56.3 + 1.1 2221.0 106.3, 91.5 4+ 1.8
64 x 1 34.9 163.8, 232.0 + 2.0 6.4 61.5, 207.3 +2.9 845.3  294.3, 243.7 4+ 3.3
32 x 2 41.7 81.9, 128.1 4+ 2.3 7.6 30.7, 106.6 +2.4 | 1014.1  169.5, 141.7 4+ 3.1
16 x 4 51.2 45.4, 75.24+2.8 10.2 15.4, 56.3+2.4 | 1297.1 106.3, 91.5+3.1
128 x 1 22.0 327.6, 441.1+6.9 4.1 122.9, 410.5 +5.0 —— OOMm, OOM
64 x 2 25.8 163.8, 232.0 + 4.6 5.1 61.5, 207.3 +5.5 567.2  294.3, 243.7 4+ 5.8
32 x4 31.5 81.9, 128.1 +4.8 7.0 30.7, 106.6 + 4.9 750.0  169.5, 141.7 + 5.7
16 x 8 41.7 45.4, 75.24+5.3 9.1 15.4, 56.3 + 5.0 905.9 106.3, 91.5+5.6
256 x 1 —— OOM, OOM 5.0 2459, 8309+ 8.2 —— OOMm, OOM
128 x 2 18.5  327.6, 441.1+412.0 3.9 1229, 410.5+ 10.1 —— O0oMm, OOM
64 x 4 21.3  163.8, 232.0+ 9.7 4.8 61.5, 207.3+ 4.6 377.2  169.5, 243.7+10.9
Table IV

RESULTS OF HYBRID PROGRAMMING USINGL6 NODES OFHOPPER

on Hopper. The only significant difference was that muchsignificant improvements over the strategies described in
less system memory was required on Carver. This is mainlgection[1V.
because on Carver, some of the libraries are dynamically We currently use the hybrid programming paradigm only
linked, and the executable files is usually much smaller thaffor the trailing submatrix update. We are considering how
that on Hopper. we can apply the hybrid paradigm for the panel factorization
and reduce the message-passing overhead.
VII. CONCLUSION Finally, we plan to extend our memory profiling studies
of the hybrid programming paradigm. For instance, we have
We studied two strategies to enhance the parallel perforgt measured the amount of memory internally allocated
mance ofSuper LU_DI ST on modern multicore architec- py MP| during the numerical factorization. These measure-
tures. The first strategy schedules independent tasks as sog,ents may show more significant advantages of the hybrid

as possible to shorten the critical path. The experimentadrogramming paradigm over the pure MPI paradigm.
results demonstrated that the parallel factorization with

new scheduling strategy is nearly three times faster than ACKNOWLEDGEMENT

the previous pipelined factorization. The second strategy

uses the hybrid programming to overcome per-core memory This research was supported in part by the Director,

constraint and fully utilize the node-level parallelism on Office of Science, Office of Advanced Scientific Computing

a NUMA manycore architecture. We incorporated light- Research of the U.S. Department of Energy under Contract

weight OpenMP threads in each MPI process to updat&o- D-AC02-05CH11231. We gratefully thank Esmond Ng

independent blocks of the trailing submatrix. This hybrid@nd David Skinner for helpful discussions.
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